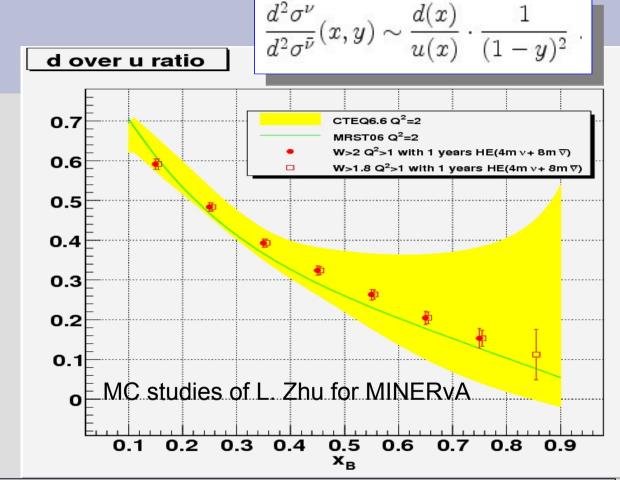
v Scattering from Hydrogen and Deuterium - What we can still learn?

Eric Christy

Neutrino Working Group Meeting Fermilab - Oct 24, 2011


What we can still learn from v data with deuterium and hydrogen.

- 1) Precise flavor and valence/sea separations of parton distributions.
- 2) Charge symmetry violations at partonic level (provide partial resolution of NuTeV anomaly).
- 3) Paschos-Wolfenstein ratio determination of weak mixing angle (ala NuTeV) with simplest isoscalar target, Deuterium.
- No hydrogen/deuterium target experiments since bubble chamber experiments.
- High intensity beams to allow studies not possible in bubble chamber era.
- Precise free proton measurements provide critical constraint to separate nuclear effects from nucleon structure in nuclear target measurements.

d/u with hydrogen target

Statistical uncertainties Estimated with:

- → Minerva cryotarget and Acceptance.
- → Subtraction of empty target background.
- → High Energy NuMI tune.
- → ~1 year running.

Statistical precision and kinematic reach to large x improves with

- 1. higher intensity
- 2. higher neutrino energies

Charge symmetry violations

Complimentary ways to determine from v beam:

1. Proton target:

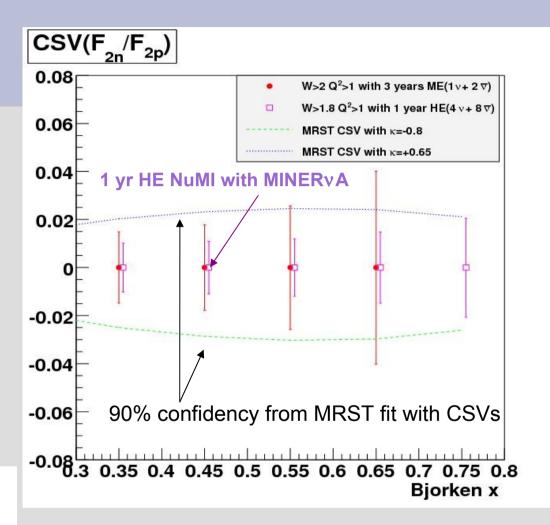
Compare v-p flavor separations to $F_{\rm 2n}/F_{\rm 2p}$ from electron scattering

- 2. Deuterium target:
 - v / vbar ratio provides direct measure of CSVs.
 - #2. Requires few percent determination of v and vbar flux.
 e.g. elastic v—e see previous talk
 (Currently being studied by MINERvA)

Sensitivity to charge symmetry violations

1. Hydrogen determination:

$$\text{CSV(F}_{2n}/\text{F}_{2p}) = \boxed{\frac{F_{2n}}{F_{2p}} - \frac{4d_p + u_p}{4u_p + d_p}}$$


From JLab BoNuS

From v-p

2. Deuterium determination:

$$u_p - d_n = -(d_p - u_n) \equiv \delta(x)$$

$$2\delta(x)/[u(x)+d(x)] \sim 1-(1-y)^2 \frac{d^2\sigma^{\nu D}}{d^2\sigma^{\bar{\nu}D}}$$

- → Deuterium comes from single experiment, but need well determined flux
- → Full power comes from including in PDF fits.

Summary

- high intensity v beam on H₂ + D₂ targets could provide:
- 1. nucleon partonic structure (including possible CSV effects) and
- 2. weak mixing angle measurement.

Within a single experiment

→ Ideal detector would be bubble chamber with Muon tagger and calorimetry downstream.

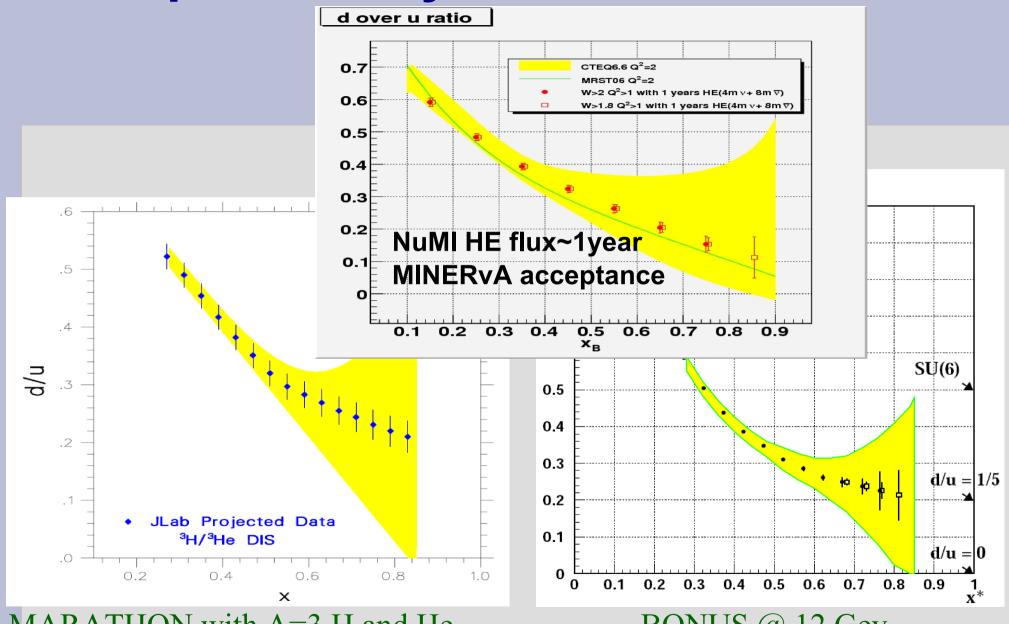
Backup

v e → v e as a Standard (Model) Candle

- * Only involves fermions and is well calculable in SM
- * The differential cross section in $T = KE_e$ at tree level is

$$\frac{d\sigma}{dT} = \frac{2G_F^2 m_{e^2}}{\pi} \left(a^2 + b^2 - 2b^2 \frac{T}{E_v} + b^2 \left(\frac{T}{E_v} \right)^2 - abm_e \frac{T}{E_v^2} \right)$$

With


$$v$$
 vbar a $(\frac{1}{2} - s^2)$ - s^2 b - s^2 ($\frac{1}{2}$ - s^2)

$$s^2 = \sin^2(\theta_W) \sim 0.23 \sim 1/4$$

and
$$(a^2 + b^2)_y = (a^2 + b^2)_{ybar} \sim 1/8$$
, -ab ~ 1/16

Measured Known Flux to be determined $\frac{dN}{dT} = \int dE_{v} \frac{d\sigma}{dT} (T, E_{v}) \cdot \frac{dS}{dE_{v}} (E_{v})$

Complementary d/u measurements

MARATHON with A=3 H and He

BONUS @ 12 Gev

10/24/2011

@ 12 Gev Fermilab neutrino WG, Eric Christy 9